A Sputnik Moment Courtesy of the Communist Chinese

Image: Public Domain

Late last summer, China reportedly carried out tests of a hypersonic orbital missile capable of carrying a nuclear warhead. In recent days, there has been a flurry of press reports stating that these tests were likely associated with an evolving Chinese first-strike capable Fractional Orbital Bombardment System (FOBS) that “shocked” the US military and intelligence community. This could be a second “Sputnik moment” courtesy of the Chinese Communist Party in less than three months, with the first being the disclosure that China “began construction of a potential intercontinental ballistic missile (ICBM) silo site in Hanggin Banner, Ordos City, Inner Mongolia,” as a precursor to a breakout deployment of 300 new nuclear-tipped intercontinental ballistic missiles.

The Soviets’ launch of the first orbiting satellite in 1957 was subsequently termed a “Sputnik moment,” meaning a rude awakening that sparked a furious response – in the case of the Sputnik, a space race between the USSR and the US. With the two Chinese sub-orbital hypersonic missile tests, it could be argued that a hypersonic missile arms race is well underway.

The Hypersonic Missile Threat

There are two variations of hypersonic weapons that are being developed and/or deployed by the Russians, Chinese, and the US: glide vehicles and cruise missiles. Hypersonic glide vehicles (HGVs) can be launched from sub-orbital vehicles or boosted to high altitudes prior to launching by ballistic missiles – in the Chinese case by their dual-use Long March rockets – and then use momentum and control surfaces to “glide” from high altitudes through the atmosphere before hitting their targets. The cruise missile versions launched by aircraft or from ships at sea use an advanced propulsion system for powered flight.

The potential use of hypersonic weapons in a conflict complicates the decision-making process associated with missile defense systems. Hypersonic missile speeds range from Mach 5 (~3,700 mph) to Mach 15 (~10,500 mph), with the latter referred to as “high-hypersonic”. The speed of these weapons adds a new calculus to the use of long-range missile defense systems, as the reaction times of anti-missile systems are greatly reduced and intelligence-surveillance reconnaissance-tracking (ISR&T) of the launch vehicles and the missiles in flight is a severe challenge. That time-difference calculation further complicates the ISR&T process when a hypersonic glide vehicle is launched from an orbiting vehicle (an operational FOBS), as the payload could be launched from orbit at virtually any target on Earth without warning.

If deployed in large numbers, a first-launch strike could inflict near-instantaneous effects on a large number primary and secondary targets at the beginning of a conflict, decapitating a country’s leadership, military command and control facilities, and ground-based satellite communications systems. The speed at which these targets would be hit could greatly change the escalation decision-making thought process, i.e., determining whether, how and when to respond to such an attack. Reaction times are greatly decreased, and the ability to detect pre-launch actions is complicated, as the weapons do not require easily detected launch preparations, complicating the tactical decision-making thought process of commanders in the field in particular. Decreased reaction times would drive defensive missile systems toward automated response through the incorporation of artificial intelligence capabilities. Think of an early version of “Skynet” of the Terminator movie series fame that is focused on automated ISR&T and missile defense.

The Hypersonic Missile Arms Race

A hypersonic missile arms race has been underway for a while now, for all practical purposes:

  • The Chinese PLA were the first to deploy an operational hypersonic missile system. The DF-17 Dongfeng medium range ballistic missile system entered service in September 2019, just in time to be paraded in Tiananmen Square to mark the 70th anniversary of Chinese Communist Party rule, as reported here. The Chinese have also tested the DF-41 intercontinental ballistic missile, which could carry a conventional or nuclear HGV, and is capable of hitting the continental US.
  • The Russians also deployed an operational hypersonic missile capability in late 2019. The first regiment of their new Avengard missiles entered service on 27 December 2019, with each missile capable of delivering a 2-megaton nuclear payload, as reported here. Russia is also developing the Tsirkon, which a ship-launched hypersonic cruise missile that is capable of traveling between Mach 6 and Mach 8.
  • The US has been racing to catch up. As reported in March 2020, a successful test was conducted of a “joint common hypersonic glide body (C-HGB) [that] rode a modified Polaris A3 booster from a launch pad at the Pacific Missile Range Facility, Kauai. The US Army has already commenced equipping its first hypersonic missile-capable unit, I Corps’ 5th Battalion, 3rd Field Artillery Regiment, 17th Field Artillery Brigade, but the first Long-Range Hypersonic Weapons dubbed the “Dark Eagle” won’t be delivered until 2023, according to this report. And both the US Navy and US Army have tested hypersonic missile components on Wednesday, according to this report. The US Air Force, Missile Defense Agency, and DARPA are also investing in hypersonic missile and hypersonic missile defense programs, but none of these systems will be deployed before 2023 at the earliest.

Hypersonic missiles are not covered under the New START Treaty, a five-year extension of the expiring nuclear arms treaty that was agreed to by Russia and the US in February 2021. And China is not a signatory to any nuclear weapons treaty. In fact, the New START Treaty limits the US to “1,550 nuclear warheads on deployed ICBMs, deployed SLBMs, and deployed heavy bombers equipped for nuclear armaments” while the Chinese are unconstrained by any nuclear weapons limitations and continue to resist bilateral nuclear arms talks with the US.

First Strike or Deterrence?

Given the CCP’s propensity for psychological warfare in support of its strategy to “win without fighting,” one could argue that these new missile tests are more for intimidation of potential adversaries than for actual use – a sort of deterrent that reinforces a country’s diplomatic actions or implements “mutual vulnerability.” However, their use in a “surprise attack” is certainly within the realm of possibility and cannot be ignored. At the very least, deployment of a Chinese operational HGV/FOBS system complicates homeland defense of the US and other nations in ways unforeseen.

A first-strike or deterrence FOBS that deploys hypersonic glide vehicles has massive technical challenges that need to be overcome before becoming fully operational. Some of these include but are not limited to:

  • The energy requirements needed to accelerate a missile with a large payload to Mach 5 – Mach 10 in the low atmosphere
  • HGV launches should be detectable in both the visual and infrared spectrums while providing a unique launch signature
  • The dynamic pressure on the airframe produced at Mach 5+ speeds create chemical corrosion problems in flight that must be overcome (potentially through some combination of thermal and chemical protection)
  • Post-launch navigation and maneuverability is non-trivial. Maneuverability during flight is a key main engineering problem that must be overcome to ensure their effectiveness against point targets

Has the PLA-Rocket Force (PLARF) solved all of its engineering problems, as well as developed the command and control and ISR&T system needed to coordinate and direct HGV launches from orbit? That is what tests are for, and the world will need to watch and analyze future PLARF tests of what could become a HGV/FOBS capability very carefully. Needless to say, the Cold War-era “nuclear triad” – submarines, aircraft, land-based ICBMs – is on the verge of becoming a “nuclear quadrangle.”

The end.

Follow AFNN:

Truth Social: @AFNN_USA
Facebook: https://m.facebook.com/afnnusa
Telegram: https://t.me/joinchat/2_-GAzcXmIRjODNh
Twitter: https://twitter.com/AfnnUsa
GETTR: https://gettr.com/user/AFNN_USA
CloutHub: AFNN_USA

4 thoughts on “A Sputnik Moment Courtesy of the Communist Chinese”

  1. China can’t equip their air craft carriers with more than helicopters, so far, so I seriously doubt they have the capability to build effective hypersonic missiles.
    You ask whether China has solved all their engineering problems, associated with hypersonic weapons. That’s a good question. It is also a good question to ask about most every piece of Chinese made, stolen technology that they probably haven’t figured out the parts they forgot to steal.
    I think China has a more serious problem than simply stealing intellectual property. There is likely always something missing when someone steals ideas. They don’t know what they forgot to steal.
    That doesn’t mean they can’t figure out their leftover problems, but it indicates a lag in understanding about that big high tech military machine they have accumulated.
    Good article, Stu.

    • One of the Russian carriers they bought was built to accommodate navalized Flankers if my memory serves, but so far they haven’t added that variant to the arsenal.

      • Russia couldn’t make an aircraft carrier work out, with or without catapults, planes or whatever. The point is that neither Russia, nor China, has the capability to project power, via the aircraft carrier, and that both countries, through varying reasons, are far behind the capability of the West, and will remain there, because they stole ideas, instead of creating them.
        At the end of the Cold War, we discovered how flawed and unusable much of our enemy’s capabilities were. That was a lesson that many still don’t get. They are still far behind the capability of the West. As long as Russia and China steal technology from the West, they will remain behind.
        That doesn’t mean they are not dangerous to the West, just that they are behind, and will remain behind until they actually create and produce something of value, or we drop the ball on our own capability.

  2. I’m not sure how to compare China’s military might to ours, other than to say that, in the 80s, during the Reagan Star War years, the US Air Force demonstrated anti-satellite offensive technology by launching missiles from high altitude flights of F-15. The Air Force proved the concept with available computing technology. To me, that demonstrates just how far behind the Chinese military will always be, since we could assume a parity with computing power and sensor improvements, and, even though we might not have an off the shelf competing product, it is probably so close to being off the shelf that China has no advantage over us.

    I have the same opinion about Russia’s high tech wizardry, when it comes to their missile capabilities. And that invasion of Ukraine has left me nonplussed about Russia’s war making machinery.

    Perhaps China and Russia, both, are playing a big bluff game?
    I could be wrong.

Leave a Comment